Robust One-Class Kernel Spectral Regression

نویسندگان

چکیده

The kernel null-space technique is known to be an effective one-class classification (OCC) technique. Nevertheless, the applicability of this method limited due its susceptibility possible training data corruption and inability rank observations according their conformity with model. This article addresses these shortcomings by regularizing solution Fisher methodology in context regression-based formulation. In respect, first, effect Tikhonov regularization Hilbert space analyzed, where learning problem presence contamination set posed as a sensitivity analysis problem. Next, sparsity studied. For both alternative schemes, iterative algorithms are proposed which recursively update label confidences. Through extensive experiments, found enhance robustness against compared baseline method, well other existing approaches OCC paradigm, while providing functionality samples effectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Kernel-Based Regression

In this research, a robust optimization approach applied to support vector regression (SVR) is investigated. A novel kernel based-method is developed to address the problem of data uncertainty where each data point is inside a sphere. The model is called robust SVR. Computational results show that the resulting robust SVR model is better than traditional SVR in terms of robustness and generaliz...

متن کامل

Robust nonparametric kernel regression estimator

In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.

متن کامل

Kernel Whitening for One-Class Classification

In one-class classification one tries to describe a class of target data and to distinguish it from all other possible outlier objects. Obvious applications are areas where outliers are very diverse or very difficult or expensive to measure, such as in machine diagnostics or in medical applications. In order to have a good distinction between the target objects and the outliers, good representa...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Kernel Truncated Regression Representation for Robust Subspace Clustering

Subspace clustering aims to group data points into multiple clusters of which each corresponds to one subspace. Most existing subspace clustering methods assume that the data could be linearly represented with each other in the input space. In practice, however, this assumption is hard to be satisfied. To achieve nonlinear subspace clustering, we propose a novel method which consists of the fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on neural networks and learning systems

سال: 2021

ISSN: ['2162-237X', '2162-2388']

DOI: https://doi.org/10.1109/tnnls.2020.2979823